Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis

نویسندگان

  • Johan M. Lorenzen
  • Celina Schauerte
  • Anika Hübner
  • Malte Kölling
  • Filippo Martino
  • Kristian Scherf
  • Sandor Batkai
  • Karina Zimmer
  • Ariana Foinquinos
  • Tamas Kaucsar
  • Jan Fiedler
  • Regalla Kumarswamy
  • Claudia Bang
  • Dorothee Hartmann
  • Shashi K. Gupta
  • Jan Kielstein
  • Andreas Jungmann
  • Hugo A. Katus
  • Frank Weidemann
  • Oliver J. Müller
  • Hermann Haller
  • Thomas Thum
چکیده

AIMS Osteopontin (OPN) is a multifunctional cytokine critically involved in cardiac fibrosis. However, the underlying mechanisms are unresolved. Non-coding RNAs are powerful regulators of gene expression and thus might mediate this process. METHODS AND RESULTS OPN and miR-21 were significantly increased in cardiac biopsies of patients with myocardial fibrosis. Ang II infusion via osmotic minipumps led to specific miRNA regulations with miR-21 being strongly induced in wild-type (WT) but not OPN knockout (KO) mice. This was associated with enhanced cardiac collagen content, myofibroblast activation, ERK-MAP kinase as well as AKT signalling pathway activation and a reduced expression of Phosphatase and Tensin Homologue (PTEN) as well as SMAD7 in WT but not OPN KO mice. In contrast, cardiotropic AAV9-mediated overexpression of OPN in vivo further enhanced cardiac fibrosis. In vitro, Ang II induced expression of miR-21 in WT cardiac fibroblasts, while miR-21 levels were unchanged in OPN KO fibroblasts. As pri-miR-21 was also increased by Ang II, we studied potential involved upstream regulators; Electrophoretic Mobility Shift and Chromatin Immunoprecipitation analyses confirmed activation of the miR-21 upstream-transcription factor AP-1 by Ang II. Recombinant OPN directly activated miR-21, enhanced fibrosis, and activated the phosphoinositide 3-kinase pathway. Locked nucleic acid-mediated miR-21 silencing ameliorated cardiac fibrosis development in vivo. CONCLUSION In cardiac fibrosis related to Ang II, miR-21 is transcriptionally activated and targets PTEN/SMAD7 resulting in increased fibroblast survival. OPN KO animals are protected from miR-21 increase and fibrosis development due to impaired AP-1 activation and fibroblast activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy.

Osteopontin (OPN) is upregulated in several experimental models of cardiac fibrosis and remodeling. However, its direct effects remain unclear. We examined the hypothesis that OPN is important for the development of cardiac fibrosis and remodeling. Moreover, we examined whether the inhibitory effect of eplerenone (Ep), a novel aldosterone receptor antagonist, was mediated through the inhibition...

متن کامل

Cardiac Hypertrophy Role of Osteopontin in Cardiac Fibrosis and Remodeling in Angiotensin II-Induced

Osteopontin (OPN) is upregulated in several experimental models of cardiac fibrosis and remodeling. However, its direct effects remain unclear. We examined the hypothesis that OPN is important for the development of cardiac fibrosis and remodeling. Moreover, we examined whether the inhibitory effect of eplerenone (Ep), a novel aldosterone receptor antagonist, was mediated through the inhibition...

متن کامل

Profibrotic effects of angiotensin II in the heart: a matter of mediators.

In response to mechanical and/or metabolic stress the myocardium undergoes structural remodeling involving cardiomyocyte hypertrophy and interstitial and perivascular fibrosis.1 Cardiomyocyte hypertrophy includes an increase in contractile and embryonic protein content, which appears largely on the activation of transcription of the corresponding cardiac genes that encode these proteins. Myocar...

متن کامل

Sp1 Mediates a Therapeutic Role of MiR-7a/b in Angiotensin II-Induced Cardiac Fibrosis via Mechanism Involving the TGF-β and MAPKs Pathways in Cardiac Fibroblasts

MicroRNA-7a/b (miR-7a/b) protects cardiac myocytes from apoptosis during ischemia/reperfusion injury; however, its role in angiotensin II (ANG II)-stimulated cardiac fibroblasts (CFs) remains unknown. Therefore, the present study investigated the anti-fibrotic mechanism of miR-7a/b in ANG II-treated CFs. ANG II stimulated the expression of specific protein 1 (Sp1) and collagen I in a dose- and ...

متن کامل

MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway.

BACKGROUND Cardiac interstitial fibrosis is a major cause of the deteriorated performance of the heart in patients with chronic myocardial infarction. MicroRNAs (miRs) have recently been proven to be a novel class of regulators of cardiovascular diseases, including those associated with cardiac fibrosis. This study aimed to explore the role of miR-101 in cardiac fibrosis and the underlying mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015